A physically based technology for processing of water basin remote sensing data
نویسندگان
چکیده
The Modular Inversion Program (MIP) is a processing and development tool designed for retrieval and mapping of hydro-biological parameters obtained from multiand hyperspectral remote sensing measurements. The architecture of the program binds a set of general and transferable computational schemes in a chain, connecting bio-physical parameters with the measured reflected radiance. The radiative transfer is simulated in MIP for a multilayer atmosphere-ocean system using the FEM method. Results of radiative transfer calculations are stored in a sensor independent form on hard disks avoiding in this way repeated solutions of radiative transfer equation. The adjustment of algorithms to sensor specifications is supported automatically in MIP. The program modules provide for the retrieval of atmosphere and water constituents, estimation of phytoplankton primary production, water column correction and classification of surface substrates. The processing system has been tested and validated on data of surveys of German inland waters performed by several airborne and satellite sensors.
منابع مشابه
Estimating runoff precipitation and providing land use maps and agriculture levels in different periods of time, using remote sensing technology in Roud Zard basin area
Today, remote sensing technology is used in all scientific and informing fields around the world, and it has achieved to very satisfying results. In the present study, by using remote sensing technology and application of satellite photographs the coefficient of curve number was estimated with high accuracy and pick discharge of the flood was calculated with a good accuracy. In this study, i...
متن کاملPalarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملStudy of the snowmelt effects on surface and ground water in the Bahar basin using remote sensing data
According to recent Studies, about 60 percent of surface waters and 57 Percent ground waters are located in snowy zones in Iran. In most areas of northern hemisphere and alpine environment areas, snow melt lead to the maximum instantaneous flow rate and is an important part of annual discharge. The present study investigated the effect of snowmelt on the surface waters and ground waters in B...
متن کاملRemote sensing technology for mapping and monitoring vegetation cover (Case study: Semirom-Isfahan, Iran)
To determine the suitable indices for vegetation cover and production assessment based on the remote sensing data, simultaneous digital data with field data belonging to the spring rangeland of the Semirom-Isfahan province were analyzed. During two years of monitoring the annual, grass, forb, and shrub vegetation cover and the total production data from 86 were collected. The Global Positioning...
متن کاملRemote sensing technology for mapping and monitoring vegetation cover (Case study: Semirom-Isfahan, Iran)
To determine the suitable indices for vegetation cover and production assessment based on the remote sensing data, simultaneous digital data with field data belonging to the spring rangeland of the Semirom-Isfahan province were analyzed. During two years of monitoring the annual, grass, forb, and shrub vegetation cover and the total production data from 86 were collected. The Global Positioning...
متن کاملIntegrating Remote Sensing Information Into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation
This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspi...
متن کامل